Skip to main content
padlock icon - secure page this page is secure

Plasma / Serum Protein Binding Determinations

Buy Article:

$68.00 + tax (Refund Policy)

The binding of a drug to serum or plasma proteins enables the transport of drugs via the blood to sites of action throughout the body. For expediency we will use serum proteins throughout this discussion with the understanding that one can substitute the term plasma proteins in all experimental instances. Only the fraction of drug unbound from serum proteins is available to diffuse from the vascular system and accumulate in tissues thereby enabling interaction with therapeutic targets and accessibility to xenobiotic clearance pathways. Therefore, the extent of drug binding to serum proteins can have a significant impact on pharmacokinetic (PK) parameters such as clearance rates and volume of distribution. In addition, because only the unbound drug is available to interact with therapeutic targets, the extent of serum binding can have significant effects on the pharmacodynamic properties of a compound as well [1, 2] Determining the fraction of drug bound to serum proteins is a standard parameter evaluated in the process of drug discovery. Although the clinical importance of changes in serum protein binding has been questioned [3-8] the need for serum protein binding studies in the discovery and preclinical development stages is essential for the pharmacokinetic modeling of drugs[1, 3, 9]. The extent of serum protein binding is an important parameter used in many in vivo modeling calculations to estimate the volume of distribution, organ clearance, and for scale-up of pharmacokinetic and pharmacodynamic parameters from animal models to humans [3, 10, 11]. The convergence of several trends in the pharmaceutical industry including high speed chemical synthesis technologies, the increasing use of in silico ADME modeling together with early in vivo evaluations of lead compounds has increased the demand for serum protein binding determinations[ 12].

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 96-well format; Equilibrium dialysis; high throughput screening; plasma protein binding; serum protein binding

Document Type: Research Article

Publication date: November 1, 2008

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more