Skip to main content
padlock icon - secure page this page is secure

The Metabolism and Toxicity of Quinones, Quinonimines, Quinone Methides, and Quinone-Thioethers

Buy Article:

$68.00 + tax (Refund Policy)

Quinones are ubiquitous in nature and constitute an important class of naturally occurring compounds found in plants, fungi and bacteria. Human exposure to quinones therefore occurs via the diet, but also clinically or via airborne pollutants. For example, the quinones of polycyclic aromatic hydrocarbons are prevalent as environmental contaminants and provide a major source of current human exposure to quinones. The inevitable human exposure to quinones, and the inherent reactivity of quinones, has stimulated substantial research on the chemistry and toxicology of these compounds. From a toxicological perspective, quinones possess two principal chemical properties that confer their reactivity in biological systems. Quinones are oxidants and electrophiles, and the relative contribution of these properties to quinone toxicity is influenced by chemical structure, in particular substituent effects. Modification to the quinone nucleus also influences quinone metabolism. This review will therefore focus on the differences in structure and metabolism of quinones, and how such differences influence quinone toxicology. Specific examples will be discussed to illustrate the diverse manner by which quinones interact with biological systems to initiate and propagate a toxic response.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: quinone methide; quinone thioether; quinones; quinonimines

Document Type: Review Article

Publication date: August 1, 2002

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more