Skip to main content

Physiology of Folic Acid in Health and Disease

Buy Article:

$68.00 + tax (Refund Policy)

Folates are important cofactors in the transfer and utilization of one-carbon-groups and play a key role in the remethylation of methionine thus providing essential methyl groups for numerous biological reactions. Furthermore, folates donate one-carbon units in the process of DNA-biosynthesis with implications for the regulation of gene expression, transcription, chromatine structure, genomic repair and genomic stability.

As the role of folate deficiency in atherosclerotic cardiovascular disease, neurological and neuropsychiatric disorders, in congenital defects and carcinogenesis has become better understood, folate has been recognized as having great potential to prevent these many disorders through folate supplementation for the general population. Folate acts directly to produce antioxidant effects, interactions with enzyme endothelial NO synthase (eNOS) and effects on cofactor bioavailability of NO. Folate acts indirectly to lower homocysteine levels and insure optimal functioning of the methylation cycle. Folate metabolism provides an interesting example of gene-environmental interaction. A great part of the population, especially subgroups with higher demand, appears to have suboptimal folate intake, as determined through more sensitive parameters now widely determined. The available data strongly suggest that criteria for ”folate deficiency“ may have to be redefined.

Keywords: 5,10-methylenetetraahydrofolate reductase; Atherosclerotic cardiovascular disease; Cardiovascular disease; Endothelial no synthase(enos); Folate deficiency; Folic acid; carcinogenesis; folates; hypomethylation

Document Type: Review Article

Publication date: April 1, 2002

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content