Skip to main content

Development of a Novel Self-Dissolving Microneedle-Assisted Percutaneous Delivery System of Diacerein through Solid Dispersion Gel: Solubility Enhancement, Proof of Anti-inflammatory Activity and Safety

Buy Article:

$68.00 + tax (Refund Policy)

Background: Diacerein, an osteoarthiritis drug, experiences slow topical permeation due to limited solubility. Additionally, it shows a laxative effect due to acid/base hydrolysis of the drug in the colon.

Objective: Diacerein solubility was improved to increase percutaneous drug delivery.

Methods: To improve saturation solubility of the drug, Diacerein was pre-treated with Polysorbate 80 aqueous solution (1% v/v) to obtain lyophilized powder after wet milling or formulated as solid dispersion using PEG 4000 by fusion method. The lyophilized Diacerein in hydroxypropyl methylcellulose (HPMC 8% w/w) and polyvinyl pyrrolidone (PVP 30% w/w) matrix, with PEG 400 as co-solvent, provided an optimized array. The solid dispersion was loaded in the CMC based gel for subsequent administration on dissolving microneedle-treated skin.

Results: The addition of PEG 400 increased Diacerein loading in microneedles to 390.35±4.28 μg per array. The lyophilized drug displayed amorphous characteristics in the dissolving microneedles as per XRD analysis. SEM photographs showed uniformity in the surface topology of microneedles. The needles showed rapid polymer dissolution within 5 minutes, whereas methylene-blue distribution confirmed the formation of microcavities in excised rat skin. The drug-loaded arrays showed better permeation (74.39%) and skin deposition (15.75%) after 24 hours, however, 129;“12% of Diacerein remained in the baseplate. This led to the tailoring of CMC-based gel (3% w/v) containing 0.4% solid dispersion of Diacerein. When compared to untreated skin, the gel improved permeation rate by 2.43 folds through aqueous microchannels generated by dissolving microneedle pre-treatment and allowed 98% drug permeation. The quasi-Fickian diffusion mechanism was found to drive ex vivo release kinetics, with a shorter lag time (0.88 h) and higher flux (26.65 μg/sq.cm.h). Microneedle-assisted Diacerein gel showed a positive anti-inflammatory effect in the paw edema model and reduced diarrheal episodes in comparison to the marketed oral formulation. The gel showed desired characteristics at 5°C±2°C when tested under accelerated stability conditions.

Conclusion: The present study reports for the first time the verification of efficacy and safety to advocate the suitability of Diacerein for percutaneous delivery through dissolving microneedle-treated skin.

Keywords: Diacerein; microneedle; permeation enhancement; solid dispersion; solubility; stabilizer

Document Type: Research Article

Publication date: November 1, 2023

This article was made available online on September 8, 2022 as a Fast Track article with title: "Development of a Novel Self-Dissolving Microneedle-Assisted Percutaneous Delivery System of Diacerein through Solid Dispersion Gel: Solubility Enhancement, Proof of Anti-inflammatory Activity and Safety".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content