Skip to main content

Conception and Evaluation of Sustained Release Polymeric Matrix Beads for Enhanced Gastric Retention

Buy Article:

$68.00 + tax (Refund Policy)

The present study was aimed at developing and evaluating polymeric beads with sustained drug release and prolonged gastric residence. The polymeric beads were prepared by solvent evaporation technique using Cellulose acetate (CA) as matrix former for model drug Ibuprofen (IBF) in 1% aqueous polyvinyl alcohol (PVA) solution as external phase. Effects of various formulation variables like drug-polymer ratio, external phase viscosity, external phase volume, solvent ratio and processing variables like stirring speed, temperature of external phase, stirring time, and drying temperature on properties of beads were accessed. Drug polymer ratio was optimized to maximize the percent yield and drug content. Beads were characterized for shape, size, percent buoyancy, entrapment efficiency, floating time and in-vitro drug release. The scanning electron micrographs show a porous nature of beads thereby enabling them to float. When used alone, CA though formed good beads, drug entrapment efficiency was very low. To increase the drug entrapment, CA was partially substituted with Ethyl cellulose EC (up to 20%) to modulate drug entrapment efficiency and optimize the bead properties including drug release. Beads formed with higher viscous solution either formed agglomerates or dumbbell shaped structures. The optimized batches have uniform size distribution, remained buoyant for more than 18 hours and sustained the drug release up to 10 hours with diffusion through matrix being the main drug releasing mechanism.





Keywords: Floating; beads; cellulose acetate; solvent evaporation

Document Type: Research Article

Publication date: 01 July 2009

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content