Skip to main content
padlock icon - secure page this page is secure

Open Access Transcriptome Analysis of FEN1 Knockdown HEK293T Cell Strain Reveals Alteration in Nucleic Acid Metabolism, Virus Infection, Cell Morphogenesis and Cancer Development

Download Article:
 Download
(PDF 1,357.9 kb)
 
Aim and Objective: Flap endonuclease-1 (FEN1) plays a central role in DNA replication and DNA damage repair process. In mammals, FEN1 functional sites variation is related to cancer and chronic inflammation, and supports the role of FEN1 as a tumor suppressor. However, FEN1 is overexpressed in multiple types of cancer cells and is associated with drug resistance, supporting its role as an oncogene. Hence, it is vital to explore the multi-functions of FEN1 in normal cell metabolic process. This study was undertaken to examine how the gene expression profile changes when FEN1 is downregulated in 293T cells.

Materials and Methods: Using the RNA sequencing and real-time PCR approaches, the transcript expression profile of FEN1 knockdown HEK293T cells have been detected for the next step evaluation, analyzation, and validation.

Results: Our results confirmed that FEN1 is important for cell viability. We showed that when FEN1 downregulation led to the interruption of nucleic acids related metabolisms, cell cycle related metabolisms are significantly interrupted. FEN1 may also participate in non-coding RNA processing, ribosome RNA processing, transfer RNA processing, ribosome biogenesis, virus infection and cell morphogenesis.

Conclusion: These findings provide insight into how FEN1 nuclease might regulate a wide variety of biological processes, and laid the foundation for understanding the role of other RAD2 family nucleases in cell growth and metabolism.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: DNA replication; FEN1; RNA process; RNA sequencing; cancer; nucleic acid metabolism

Document Type: Research Article

Publication date: July 1, 2019

More about this publication?
  • Combinatorial Chemistry & High Throughput Screening publishes full length original research articles and reviews describing various topics in combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) and/or high throughput screening (e.g. developmental, practical or theoretical). Ancillary subjects of key importance, such as robotics and informatics, will also be covered by the journal. In these respective subject areas, Combinatorial Chemistry & High Throughput Screening is intended to function as the most comprehensive and up-to-date medium available. The journal should be of value to individuals engaged in the process of drug discoveryand development, in the settings of industry, academia or government.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more