Skip to main content
padlock icon - secure page this page is secure

Prediction of Metabolic Pathway Using Graph Property, Chemical Functional Group and Chemical Structural Set

Buy Article:

$68.00 + tax (Refund Policy)

In systems biology, it is a great challenge for researchers to identify whether the given set of organic compounds can combine together and form a meaningful pathway. Fortunately, it becomes more and more feasible to address and solve such a problem with the rapidly accumulated information on various organisms. Based on the attainable information, a novel computational approach is proposed to investigate this problem by adopting the metabolic pathway of yeast as the subject of the study. And we produced a benchmark dataset with 13,736 pathways consisting of both valid and invalid pathways and identified the valid pathways among them. Each of these pathways was encoded into a numeric vector, consisting of three parts: graph property, chemical functional group, and chemical structural set. Methods of Minimum Redundancy Maximum Relevance and Incremental Feature Selection were utilized to select an optimal feature set, and Nearest Neighbor Algorithm was adopted as the classification model, while Jackknife Test was used to evaluate the model. As a result, an optimal feature set consisting of 16 features, which were able to identify the valid pathways most successfully, was obtained.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chemical functional group; Encoding Methods; Metabolism; chemical structural set; compound similarity; jackknife cross-validation; metabolic pathway; minimum redundancy maximum relevance; nearest neighbor algorithm

Document Type: Research Article

Publication date: April 1, 2013

More about this publication?
  • Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a wide range of the integration of biology with computer and information science.

    The journal focuses on reviews on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.

    Current Bioinformatics is an essential journal for all academic and industrial researchers who want expert knowledge on all major advances in bioinformatics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more