Skip to main content
padlock icon - secure page this page is secure

Computational Biology and Drug Discovery: From Single-Target to Network Drugs

Buy Article:

$68.00 + tax (Refund Policy)

The drug discovery process is complex, time consuming and expensive, and includes preclinical and clinical phases. The pharmaceutical industry is moving from a symptomatic relief focus towards a more pathology-based approach where a better understanding of the pathophysiology should help deliver drugs whose targets are involved in the causative processes underlying the disease. Computational biology and bioinformatics have the potential not only to speed up the drug discovery process, thus reducing the costs, but also to change the way drugs are designed. In this review we focus on the different computational and bioinformatics approaches that have been proposed and applied to the different steps involved in the drug development process. The development of 'network-reconstruction' methods is now making it possible to infer a detailed map of the regulatory circuit among genes, proteins and metabolites. It is likely that the development of these technologies will radically change, in the next decades, the drug discovery process, as we know it today.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Leukemia; Supervised-learning methods; bioinformatics; lead identification; reverse engineering; titration-invariant similarity score (TISS)

Document Type: Research Article

Affiliations: Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy;

Publication date: January 1, 2006

More about this publication?
  • Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a wide range of the integration of biology with computer and information science.

    The journal focuses on reviews on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.

    Current Bioinformatics is an essential journal for all academic and industrial researchers who want expert knowledge on all major advances in bioinformatics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more