Skip to main content

Involvement of Advanced Glycation End-products (AGEs) in Alzheimer's Disease

Buy Article:

$68.00 + tax (Refund Policy)

The advanced stage of the glycation process (one of the post-translational modifications of proteins) leads to the formation of advanced glycation end-products (AGEs) and plays an important role in the pathogenesis of angiopathy in diabetic patients. It has recently become clear that AGEs also influence physiological aging and neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS).

Recently we have provided direct immunochemical evidence for the existence of six distinct AGE structures within the AGE-modified proteins and peptides that circulate in the serum of diabetic patients on hemodialysis (DM-HD). We showed a direct toxic effect of the synthetic AGE-2 (glyceraldehyde-derived AGEs) on cortical neuronal cells and provided evidence for a toxic effect of AGE-2 present in DM-HD serum. These results indicate that of the various types of AGE structures that can form in vivo, the AGE-2 structure is likely to play an important role in the pathophysiological processes associated with AGE formation.

In AD brains, AGE-2 epitope was mainly present in the cytosol of neurons in the hippocampus and para-hipocampal gyrus. Protein cross-linking by AGE structures results in the formation of protease-resistant aggregates. Such protein aggregates may interfere with both axonal transport and intracellular protein traffic in neuron.

In this review, we provide an outline of AGEs formation in vivo and propose that the novel structural epitope AGE-2 is an important toxic moiety for neuronal cells in AD.

Keywords: AGE-2 structure; Alzheimers disease (AD); advanced glycation end-products (AGEs); apoptosis; diabetes mellitus (DM); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); glyceraldehyde-derived AGEs; neurotoxicity

Document Type: Review Article

Affiliations: Department of Biochemistry, Faculty of Pharmaceutical Science, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.

Publication date: February 1, 2004

More about this publication?
  • Current Alzheimer Research publishes peer-reviewed frontier review and research articles on all areas of Alzheimer's disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer's disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer's disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer's disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer's disease. Current Alzheimer Research provides a comprehensive 'bird's-eye view' of the current state of Alzheimer's research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Call for Papers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content