Skip to main content
padlock icon - secure page this page is secure

Open Access Attribute Profiles on Derived Features for Urban Land Cover Classification

Download Article:
(PDF 3,607.4 kb)
This research deals with the automatic generation of 2D land cover maps of urban areas using very high resolution multispectral aerial imagery. The appropriate selection of classifier and attributes is important to achieve high thematic accuracies. In this paper, new attributes are generated to increase the discriminative power of auxiliary information provided by remote sensing images. The generated attributes are derived from the vegetation index and elevation information using morphological attribute profiles. The extended experimental evaluation and comparison of attribute profile-based mapping solutions is conducted to derive the optimal combinations of attributes required for classification and to understand the genericity of attributes on a range of classifiers, i.e., various combinations of attributes and classifiers. Experimental results with two high resolution images show that the proposed attributes derived on auxiliary information outperform the existing attribute profiles computed on original image and its principal components.

32 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2017

More about this publication?
  • The official journal of the American Society for Photogrammetry and Remote Sensing - the Imaging and Geospatial Information Society (ASPRS). This highly respected publication covers all facets of photogrammetry and remote sensing methods and technologies.

    Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association serving over 7,000 professional members around the world. Our mission is to advance knowledge and improve understanding of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic information systems (GIS), and supporting technologies.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more