Skip to main content

Open Access Developing Efficient Procedures for Automated Sinkhole Extraction from Lidar DEMs

Sinkhole detection in karst areas is usually difficult through remote sensing image interpretation. We present an efficient approach to extract mature sinkholes from lidar DEM. First, an adaptive Wiener filter (AWF) and hierarchical watershed segmentation (HWS) are applied to identify all local depression or potential sinkholes. Second, a hole-filling algorithm is applied to the potential sinkholes, and nine spatial features are extracted. Finally, the random forest classifier is used to select true sinkholes from all potential sinkholes. Our results show that this approach is efficient for detecting mature sinkholes from lidar data, and it can be used for risk assessment and hazard preparedness in karst areas.

Document Type: Research Article

Publication date: 01 June 2013

More about this publication?
  • The official journal of the American Society for Photogrammetry and Remote Sensing - the Imaging and Geospatial Information Society (ASPRS). This highly respected publication covers all facets of photogrammetry and remote sensing methods and technologies.

    Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association serving over 7,000 professional members around the world. Our mission is to advance knowledge and improve understanding of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic information systems (GIS), and supporting technologies.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content