Skip to main content
padlock icon - secure page this page is secure

Open Access A New Method for Segmenting Individual Trees from the Lidar Point Cloud

Download Article:
 Download
(PDF 5,058.9 kb)
 
Light Detection and Ranging (lidar) has been widely applied to characterize the 3-dimensional (3D) structure of forests as it can generate 3D point data with high spatial resolution and accuracy. Individual tree segmentations, usually derived from the canopy height model, are used to derive individual tree structural attributes such as tree height, crown diameter, canopy-based height, and others. In this study, we develop a new algorithm to segment individual trees from the small footprint discrete return airborne lidar point cloud. We experimentally applied the new algorithm to segment trees in a mixed conifer forest in the Sierra Nevada Mountains in California. The results were evaluated in terms of recall, precision, and F-score, and show that the algorithm detected 86 percent of the trees (“recall”), 94 percent of the segmented trees were correct (“precision”), and the overall F-score is 0.9. Our results indicate that the proposed algorithm has good potential in segmenting individual trees in mixed conifer stands of similar structure using small footprint, discrete return lidar data.

35 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2012

More about this publication?
  • The official journal of the American Society for Photogrammetry and Remote Sensing - the Imaging and Geospatial Information Society (ASPRS). This highly respected publication covers all facets of photogrammetry and remote sensing methods and technologies.

    Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association serving over 7,000 professional members around the world. Our mission is to advance knowledge and improve understanding of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic information systems (GIS), and supporting technologies.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more