Skip to main content
padlock icon - secure page this page is secure

Open Access An Integrated Approach to Wildland Fire Mapping of California, USA Using NOAA/AVHRR Data

Download Article:
(PDF 2,133.8 kb)
To map wildland fires for emission estimation in California, this paper presents an integrated approach to wildfire mapping using daily data of the Advanced Very High Resolution Radiometer (AVHRR) on board a National Oceanic and Atmospheric Administration’s (NOAA) satellite. The approach consists of two parts: active fire detection and burnt area mapping. In active fire detection, we combined the strengths of a fixed multi-channel threshold algorithm and an adaptive-threshold contextual algorithm and modified the fire detection algorithm developed by the Canada Center for Remote Sensing (CCRS) for fire detection in boreal forest ecosystems. We added a contextual test, which considers the radiometric difference between a fire pixel and its surrounding pixels, and a sun glint elimination test to the CCRS algorithm. This can effectively remove false alarms caused by highly reflective clouds and surfaces and by warm backgrounds. In burnt area mapping, we adopted and modified the Hotspot and NDVI Differencing Synergy (HANDS) algorithm, which combines the strengths of hotspot detection and multi-temporal NDVI differencing. We modified the HANDS procedure in three ways: normalizing post-fire NDVI to pre-fire NDVI by multiplying an NDVI ratio coefficient, calculating mean and standard deviation of NDVI decrease of land-cover types separately, and adding a new iteration procedure for confirming potential burnt pixels. When the integrated method was applied to the mapping of wildland fires in California during the 1999 fire season, it produced comparable results. Most of the wildfires mapped were found to be correct, especially for those in forested ecosystems. Validation was based both on limited ground truth from the California Department of Forestry and Fire Protection and on interpreted burnt areas from Landsat 7 TM scenes.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 2006

More about this publication?
  • The official journal of the American Society for Photogrammetry and Remote Sensing - the Imaging and Geospatial Information Society (ASPRS). This highly respected publication covers all facets of photogrammetry and remote sensing methods and technologies.

    Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association serving over 7,000 professional members around the world. Our mission is to advance knowledge and improve understanding of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic information systems (GIS), and supporting technologies.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more