Skip to main content
padlock icon - secure page this page is secure

First-Principles Study on the Phase Stability and Mechanical Properties of Boron Carbides in Boron-Bearing High-Speed Steel

Buy Article:

$106.38 + tax (Refund Policy)

The phase stability and mechanical properties of boron carbides in Fe–Cr–B boron-bearing high-speed steel were determined via the first-principles calculation method of the density functional theory. The types of boron carbides in this steel were determined through equilibrium thermodynamic phase diagrams and X-ray diffraction analysis of the material. In addition, the lattice constant, binding energy, electronic density of states, mechanical properties, and hardness of boron carbides were calculated with the VASP software. The results showed that VC, WC, Fe2B, Mo2B, W2B, and W2FeB2 were stable in Fe–Cr–B boron-bearing high-speed steel. Among these compounds, VC exhibited the highest thermodynamic stability (enthalpy of formation: –44.16 kJ mol–1). The boron carbides all exhibited metallic characteristics. Furthermore, the corresponding electronic density of states was contributed mainly by the P orbit of B and C atoms and the d orbit of Fe, Mo, V, and W. Except for the ratio of WC, the BH /GH ratios of all phases were >1.75, indicating that these phases were all ductile. Poisson's ratios of ∼0.25 were obtained, consistent with the ionic-covalent nature of the compounds. When the B measurement ratio increased, the hardness of the phases with rich B surpassed the hardness of the phases with rich C. The highest Debye temperature (906.65 K) was obtained for VC, which had the strongest covalent bond, as evidenced by the width of its pseudogap.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: October 1, 2018

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more