Skip to main content
padlock icon - secure page this page is secure

Integrating Multi-Functionalities Into Non-Spherical Microparticles Fabricated by Top-Down Approach

Buy Article:

$107.07 + tax (Refund Policy)

Inorganic micro- and nanoparticles have promising applications in various domains including nanomedicine. However, those fabricated by top-down approach, which has potential for production of size and shape-specific particles, have not been sufficiently exploited in the domain. In this study, we intend to demonstrate the feasibility of integration of multi-functionalities into one non-spherical microparticle by combining photolithography with self-assembled monolayers. Formation of self-assembled monolayers provides versatile chemical functionalities by tailoring the interfaces between the micro- and nanoparticles of any geometry or size and their environment with molecular precision. Herein, square plate-like gold microparticles were region-selectively functionalized by self-assembled monolayers with two different active terminal moieties such as amine and biotin. Further modification allowed integrating multi-functionalities including fluorescent probes and biomolecules into one particle, which has been confirmed by fluorescence microscopy and scanning electron microscopy. These results suggest a potential use of such non-spherical micro- and nanoparticles with multi-functionalities for target-specific diagnostics and therapeutics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: MULTI-FUNCTIONALITIES; NANOPARTICLES; NON-SPHERICAL MICROPARTICLES; PHOTOLITHOGRAPHY; REGION-SELECTIVE SURFACE MODIFICATION; SELF-ASSEMBLED MONOLAYERS

Document Type: Research Article

Publication date: September 1, 2015

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more