
Characteristics of Vertical Carbon Nanotube Field-Effect Transistors on p-GaAs
A semiclassical method is used to simulate the characteristics of vertical carbon nanotube fieldeffect transistors on p-GaAs. The calculation results show unique transfer characteristics that depend on the sign of the drain voltage. The transistors exhibit p-type characteristics
and ambipolar characteristics for a positive drain voltage and a negative drain voltage, respectively. The p-type characteristics do not change with the GaAs bandgap and doping level, because the hole current from the single-walled carbon nanotube (SWCNT) and drain side dominates the
whole current. In contrast, the ambipolar characteristics are greatly influenced by the GaAs bandgap and doping level. Only the electron current in the ambipolar characteristics increases as the GaAs bandgap decreases. Increasing the p-type doping of GaAs increases the p-branch
current and decreases the electron current (n-branch) of the ambipolar characteristics. The effects of the SWCNT bandgap and doping level are different from those of GaAs, and the impact of SWCNT on the p-type characteristics is much greater than the impact on the ambipolar characteristics.
The p-type current increases as the SWCNT bandgap decreases.
Keywords: CARBON NANOTUBES; ELECTRICAL (ELECTRONIC) PROPERTIES; FIELD-EFFECT TRANSISTOR (FET); SEMICLASSICAL SIMULATION
Document Type: Short Communication
Publication date: September 1, 2019
- Nanoscience and Nanotechnology Letters (NNL) is a multidisciplinary peer-reviewed journal consolidating nanoscale research activities in all disciplines of science, engineering and medicine into a single and unique reference source. NNL provides the means for scientists, engineers, medical experts and technocrats to publish original short research articles as communications/letters of important new scientific and technological findings, encompassing the fundamental and applied research in all disciplines of the physical sciences, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content