Skip to main content
padlock icon - secure page this page is secure

The Role of Epitaxial Strain on the Spontaneous Formation of Bi-Rich Nanostructures in Ga(As,Bi) Epilayers and Quantum Wells

Buy Article:

$106.81 + tax (Refund Policy)

In this work, we explore the role of epitaxial strain on the spontaneous development of Bi-rich nanostructures within Ga(As,Bi) epilayers and Ga(As,Bi)/GaAs quantum wells (QWs) grown by molecular beam epitaxy. We observe the spontaneous formation of ordered arrays of uniform nanometer-sized Bi-rich structures in Ga(As,Bi)/GaAs QWs and of columnar-like Bi-rich regions in Ga(As,Bi) epilayers, respectively. A correlation between the microstructure and the growth conditions is established. In particular, we find that the As/Ga flux ratio has a significant impact and that epilayers grown at high temperature (315 °C) are homogeneous. The formation mechanism of such microstructure is discussed in terms of the epitaxial strain effect versus the composition effect (i.e., the phase separation tendency of the alloy). We demonstrate that the accumulation of epitaxial strain due to the lattice mismatch can not explain our experimental observations. On the other hand, we find that the spontaneous formation of the nanostructures is the consequence of a surface-directed decomposition process at the growing front due to the inherent tendency of the alloy to phase separate. Surface processes (including Bi surface segregation) are decisive in determining the final morphology.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: July 1, 2017

More about this publication?
  • Nanoscience and Nanotechnology Letters (NNL) is a multidisciplinary peer-reviewed journal consolidating nanoscale research activities in all disciplines of science, engineering and medicine into a single and unique reference source. NNL provides the means for scientists, engineers, medical experts and technocrats to publish original short research articles as communications/letters of important new scientific and technological findings, encompassing the fundamental and applied research in all disciplines of the physical sciences, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more