Skip to main content
padlock icon - secure page this page is secure

Open Access High-performance solar-blind photodetector with graphene and nitrogen-doped reduced graphene oxide quantum dots (rGOQDs)

Download Article:
(PDF 11,536.6 kb)
Hybrid photodetector of graphene and reduced graphene oxide quantum dots (rGOQDs) is promising for deep-UV photodetection. However, these photodetectors are usually suffered from long response time and vacuum-required measurement environment. In this study, nitrogen-doped rGOQDs were synthesized by the improved Hummers method and DMF hydrothermal treatment approach, while DMF was used as a reducing reagent to enhance the photoresponse of rGOQDs. Hybrid photodetector with rGOQDs on graphene was fabricated using Al2O3 as capping layer. High photoresponsivity of 2.1 × 106 V/W and response time of 0.13 s were obtained at deep-UV under ambient environment, and enhanced photoresponse was observed in solar-blind wavelength compared to normal UV light. Furthermore, the integration of rGOQDs made a great improvement for graphene transistor characteristics, with a 5-fold mobility improvement and a shift of Dirac point of 50 V. This paper provide a feasible way for the fabrication of solar-blind photodetectors with high responsivity, fast response time and ambient condition performance, which are important for the community of photodetection.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: February 1, 2018

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more