
Mechanical and dynamic properties of nettle-polyester composite
This work deals with the use of Himalayan Nettle (a natural plant fiber) as a reinforcement in polyester resin matrix and characterisation of as-formed nettle-polyester composite. Tensile test on single nettle fibers revealed that the Young's modulus and tensile strength decrease with
increase in fiber diameter, and chemical composition test results show that the fiber has higher content of cellulose, hemi-cellulose and lignin that result in better mechanical, biodegrading and thermal stability properties of the composite respectively. Characterization of mechanical properties
of randomly-oriented short himalayan nettle fiber reinforced-polyester resin matrix composite was done using tensile, compression and flexural test results. New analytical models were developed considering the effects of orientation and variation of fiber diameters for the determination of
Young's modulus and tensile strength. The models are found to yield results which are in good correlation with experimental results. Experimental modal analysis was carried out on cantilever beam specimens for determining material and material plus structural damping ratios using half power
band-width method. At higher frequencies, the average damping ratios were found to be 4 to 10 times higher than polymer concrete, C.I. and steel materials. Morphological analysis of the composite (SEM) revealed the structure of the nettle fiber to be hollow, which helps to improve specific
stiffness and vibration absorption ability.
24 References.
No Supplementary Data.
No Article Media
No Metrics
Keywords: DAMPING RATIO; MECHANICAL PROPERTIES; NATURAL FIBER-NETTLE; NATURAL FREQUENCY; POLYMER MATRIX-POLYESTER
Document Type: Research Article
Publication date: December 1, 2015
- Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites