Skip to main content
padlock icon - secure page this page is secure

Open Access A Power-Driven Stochastic-Deterministic Hierarchical High-Level Synthesis Framework for Module Selection, Scheduling and Binding

Download Article:
(PDF 1,117.3 kb)
We present a power-driven hierarchical framework for module/functional-unit selection, scheduling, and binding in high level synthesis. A significant aspect of algorithm design for large and complex problems is arriving at tradeoffs between quality of solution and timing complexity. Towards this end, we integrate an improved version of the very runtime-efficient list scheduling algorithm called modified list scheduling (MLS) with a power-driven simulated annealing (SA) algorithm for module selection. Our hierarchical framework efficiently explores the problem solution space by an extensive exploration of the power-driven module-selection solution space via SA, and for each module selection solution, uses MLS to obtain a scheduling and (integrated) binding (S&B) solution in which the binding is either a regular one (minimizing number of FUs and thus FU leakage power) or power-driven with mux/demux power considerations. This framework avoids the very runtime intensive exploration of both module selection and S&B within a conventional SA algorithm, but retains the basic prowess of SA by exploring only the important aspect of power-driven module-selection in a stochastic manner. The proposed hierarchical framework provides an average of 9.5% FU leakage power improvement over state of the art (approximate) algorithms that optimize only FU leakage power, and has a smaller runtime by factors of 2.5–3x. Further, compared to a sophisticated flat simulated annealing framework and an optimal 0/1-ILP formulation for total (dynamic and leakage) FU and architecture power optimization under latency constraints, PSA-MLS provides an improvement of 5.3–5.8% with a runtime advantage of 2x, and has an average optimality gap of only 4.7–4.8% with a significant runtime advantage of a factor of more than 1900, respectively.

7 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2019

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more