Skip to main content
padlock icon - secure page this page is secure

Open Access A Novel High Frequency Low Voltage Low Power Current Mode Analog to Digital Converter Pipeline

Download Article:
 Download
(PDF 2,897.1 kb)
 
This paper introduces a novel structure for the realization of a low voltage, low power current-mode analog to the digital converter (ADC) pipeline (12 bits). The proposed structure of the ADC is based on a novel design of a current comparator and Digital to Analog Converter (DAC) structure. This modification allows us to reach a higher speed, lower voltage, and lower power dissipation. ELDO simulators using 0.18 μm, CMOS and TSMC parameters are performed to confirm the workability of this architecture. The proposed ADC is powered with a 1 V supply voltage. It is characterized by wide conversion frequency (350 MHz) and low power consumption that is 2.76 mW.

24 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ADC; AMPLIFIER CIRCUIT; CURRENT COMPARATOR; DAC; SUBTRACTOR

Document Type: Research Article

Publication date: December 1, 2019

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more