Skip to main content
padlock icon - secure page this page is secure

A Comparison of Electroencephalography Signals Acquired from Conventional and Mobile Systems

Buy Article:

$105.00 + tax (Refund Policy)

Advances in neurotechnology have made it possible for researchers to investigate brain function beyond the laboratory using mobile electroencephalography (EEG) systems. Mobile EEG systems offer researchers more experimental flexibility and a cheaper alternative to laboratory-based systems; however, it is unclear if their signal quality is comparable. Here we compared signals acquired from two wireless systems, Advanced Brain Monitoring (ABM) X10 and Emotiv EPOC, to signals measured from a conventional, wired BioSemi EEG system using both human participants and a surrogate phantom head. Participants performed a visual oddball task while wearing each of the three systems on different days. Additionally, the phantom provided known-source data that were triggered using the same event-related timing parameters in the oddball task. Results from the participant data, and corroborated from the phantom device, showed that both mobile devices contained an inherent temporal offset with the largest offset seen in Emotiv. Moreover, the Emotiv system required offline processing to properly control for jitter in event synchronization. Data from the Emotiv EPOC system was more susceptible to artifacts, resulting in a higher number of rejected trials with respect to the other systems. However, after proper event alignment we found signal quality was similar between the mobile and laboratory systems on average. Specifically, we found no significant differences between systems in delta, theta, alpha, and beta frequency power in the average-based analysis. Single-trial analysis revealed that data from the ABM system exhibited better classification between standard and oddball stimuli when compared to the Emotiv system. Furthermore, single-trial analysis showed significant differences in classification performance between Emotiv and BioSemi but not between ABM and BioSemi. Our findings suggest signals acquired from the ABM X10 mobile system are comparable to signals obtained from the laboratory-based BioSemi system, and while the Emotiv EPOCH can yield reliable results, data from this system requires significant corrections prior to analysis in event-related paradigms.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ADVANCED BRAIN MONITORING; BIOSEMI; EEG COMPARISON; EMOTIV; TRANSLATIONAL NEUROSCIENCE

Document Type: Research Article

Publication date: 01 February 2014

More about this publication?
  • Journal of Neuroscience and Neuroengineering (JNSNE) is an international peer- reviewed journal that covers all aspects of neuroscience and neuroengineering. The journal publishes original full-length research papers, letters, tutorials and review papers in all interdisciplinary disciplines that bridge the gaps between neuroscience, neuroengineering, neurotechnology, neurobiology, brain disorders and diseases, novel medicine, neurotoxicology, biomedical engineering and nanotechnology.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more