
Enhanced Lithium Ion Storage by Titanium Dioxide Addition to Zinc Telluride-Based Alloy Composites
A nanostructured ZnTe–TiO2–C composite is synthesized, via a two-step high-energy mechanical milling process, for use as a new promising anode material in Li-ion batteries (LIBs). X-ray diffraction and X-ray photoelectron spectroscopy results confirm the successful
formation of ZnTe alloy and rutile TiO2 phases in the composites using ZnO, Te, Ti, and C as the starting materials. Scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping measurements further reveal that ZnTe and TiO2
nanocrystals are uniformly dispersed in an amorphous carbon matrix. The electrochemical performances of ZnTe–TiO2–C and other control samples were investigated. Compared to ZnTe–TiO2 and ZnTe-C composites, the ZnTe– TiO2–C nanocomposite
exhibits better performance, thereby delivering a high reversible capacity of 561 mAh g−1 over 100 cycles and high rate capability at a high current density of 5 A g−1 (79% capacity retention of its capacity at 0.1 A g−1). Furthermore, the
long-term cyclic performance of ZnTe–TiO2–C at a current density of 0.5 A g−1 shows excellent reversible capacity of 528 mAh g−1 after 600 cycles. This improvement can be attributed to the presence of a TiO2-C hybrid matrix,
which acts as a buffering matrix that effectively mitigates the large volume changes of active ZnTe during repeated cycling. Overall, the ZnTe–TiO2–C nanocomposite is a potential candidate for high-performance anode materials in LIBs.
Keywords: Anode; Lithium Ion Batteries; Nanocomposite; Titanium Oxide; Zinc Telluride
Document Type: Research Article
Affiliations: Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
Publication date: November 1, 2020
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content