Skip to main content
padlock icon - secure page this page is secure

Peptides Co-Assembling into Hydrangea-Like Microstructures

Buy Article:

$106.38 + tax (Refund Policy)

Supramolecular assembly in vitro is a simple and effective way to produce multi-level biostructures to mimic the self-assembly of biomolecules in organisms. The study on peptide assembly behaviors would benefit a lot to understand what goes on in life, as well as in the construction of plenty of functional biomaterials that have potential applications in various fields. Since cellular microenvironments are crowded and contain various biomolecules, studying protein and peptide co-assembly is of great interest. Here, we introduced the co-assembly of 5-FAM-ELVFFAE-NH2 (EE-7) and (CY5)-KLVFFAK-NH2 (KK-7), which are sequences derived from the core of the amyloid β (Aβ) peptide, a key protein in Alzheimer’s diseases. Morphologic studies employing atomic force microscopy and scanning electron microscopy indicated that the co-assembled entities had a novel hydrangea-like microstructure, in contrast to micro-sheet structures formed from monocomponent EE-7 or KK-7, respectively. Fluorescence co-localization experiments confirmed that the hydrangealike microstructures were indeed made of both EE-7 and KK-7. We suggest that the formation of the hydrangea-like microstructures is driven by both the electrostatic and hydrophobic interactions between EE-7 and KK-7. A molecular mechanism has been provided to explain the formation of the hydrangea-like microstructures.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Atomic Force Microscope (AFM); Co-Assembly; Hydrangea-Like Microstructures; Peptide; Scanning Electron Microscope (SEM)

Document Type: Research Article

Affiliations: Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more