Skip to main content
padlock icon - secure page this page is secure

Design and Implementation of High-Throughput Magnetic Separation Module for Automated Nucleic Acid Detection System Based on Magnetic Nano-Beads

Buy Article:

$106.38 + tax (Refund Policy)

With the higher and higher application level of medical technology, more and more genetic diseases have been diagnosed. Nucleic acid, as an important genetic material, has been found to have important functions in the storage and transmission of the genetic information in the replication and synthesis of proteins. As the first step in nucleic acid detection experiments, nucleic acid extraction performance is associated with the purity of target nucleic acid samples, which is very important for the downstream steps. In this paper, we employed the magnetic bead for extracting nucleic acids based on the platform of large liquid handling workstation and designed a matching magnetic separation module. It was shown that the temperature control block designed in this paper has reliable stability, high accuracy by using the incremental PID algorithm, with the control accuracy up to ±0.5 °C, and the control stabilization time is about 90 s, which can satisfy the experimental requirements. Besides, the average magnetic bead transfer rate of this module was further verified by mimicking the manual magnetic bead nucleic acid extraction process. The results proved that the module has an excellent performance with the average magnetic bead transfer rate greater than 95% and the magnetic bead transfer rate in each well greater than 90%, which could be consistent with the experimental indictors of nucleic acid extraction.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: High-Throughput Magnetic Separation; Laboratory Automation; Magnetic Nanoparticles; Nucleic Acid Extraction

Document Type: Research Article

Affiliations: 1: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China 2: Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China 3: Tibetan University of Tibetan Traditional Medicine, Lasa 850000, China

Publication date: April 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more