Skip to main content

Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond

Buy Article:

$107.14 + tax (Refund Policy)

High electron mobility transistors (HEMTs) and Schottky barrier diodes (SBDs) based on AlGaN/GaN heterostructure have been widely studied for high-frequency and/or high-power application. Widely distributed substrates for the high performance of RF applications are presently AlGaN/GaN on SiC, and those for high power performance are AlGaN/GaN on Si. Because the thermal conductivity of CVD diamond substrates is as high as 12 W/cm · K, devices on AlGaN/GaN on CVD diamond are one of the excellent alternatives for power and RF applications. In comparison, the thermal conductivity of AlGaN/GaN on SiC is 4.9 W/cm K, and that of AlGaN/GaN on Si is 1.3 W/cm · K. In this work, we report the fabrication of SBD devices with 163.8 mm Schottky channel length. We also compared the thermal properties of the fabricated large scale SBD devices on different substrates.

Keywords: AlGaN/GaN; CVD Diamond; SBD; Schottky Barrier Diode; Thermal Properties

Document Type: Research Article

Affiliations: ICT Materials & Components & Research Laboratory, ETRI, 218 Gajeongno, Yuseong-Gu, Daejeon 34129, Korea

Publication date: October 1, 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content