Skip to main content

Conductivity Properties of Single-Walled Carbon Nanotubes Upon the Encapsulation of TTF and TCNQ

Buy Article:

$107.14 + tax (Refund Policy)

N-type and p-type single-walled carbon nanotubes (SWNTs) were formed via the encapsulation of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) inside SWNTs, respectively. Raman, near-infrared, and X-ray photoelectron spectrometer were used to confirm the encapsulation. From measurements of the current–voltage curves in a vacuum, it was revealed that current of TTF-encapsulated SWNTs decreased and TCNQ-encapsulated SWNTs increased comparing with that of pristine SWNTs. This was resulted from electron-donating (TTF) and withdrawing (TCNQ) character into SWNTs.

Keywords: CONDUCTIVITY; ENCAPSULATION; SINGLE-WALLED CARBON NANOTUBES; TCNQ; TTF

Document Type: Research Article

Publication date: 01 October 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content