Skip to main content
padlock icon - secure page this page is secure

One-Pot Synthesis of Magnesium Aminoclay-Titanium Dioxide Nanocomposites for Improved Photocatalytic Performance

Buy Article:

$106.87 + tax (Refund Policy)

TiO2 nanoparticles (NPs) with their excellent photocatalytic performance are among the hottest research subjects for environmental-cleanup applications. In the present work, we developed a method of one-pot synthesis of magnesium aminoclay-titanium dioxide [MgAC-TiO2] nanocomposites in ethanol solution and then treated the obtained nanocomposites in a 350 °C muffle furnace for 3 hours. The obtained X-ray diffraction (XRD) patterns confirmed the growth of the anatase TiO2 NPs in the amorphous MgAC phase. In the scanning electron microscopy (SEM) morphological observation, the MgAC-TiO2 nanocomposites exhibited an aggregate form of 246.59 ± 54.20 nm diameter. The synthesis condition entailing loading of 0.3 g MgAC and 5 mL titanium butoxide (TB) (denoted as MgAC [0.3 g]-TiO2 in 40 mL ethanol solution displayed the largest BET surface area, 234.91 m2/g, as well as the largest pore size and pore volume, 6.7131 nm and 0.3942 cm3/g, respectively. Also, MgAC [0.3 g]-TiO2 showed the best photocatalytic performance for methylene blue (MB) on the batch scale under 365 nm wavelength irradiation: a degradation constant rate of 0.0293 min−1, which was ~20-times-better photocatalytic activity than commercial P25. On the pilot scale (100 L), the MgAC [0.3 g]-TiO2 nanocomposite took only ~12 hours to degrade almost MB at 10 ppm concentration. The mechanism of this high photocatalytic activity was determined to be the high rate of adsorption of both MgAC and oxygen vacancies in the anatase phase coupled with the retardation of the rate of recombination of electrons and holes in the TiO2 NPs, the latter proved by photoluminescent quenching tests.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Aminoclay; Nanocomposite; Photocatalysis; TiO2; Water Treatment

Document Type: Research Article

Affiliations: 1: Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea 2: Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Gyeonggi-do, Republic of Korea 3: R&D Platform Center, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Daejeon 34129, Republic of Korea 4: Department of Biological Engineering, College of Engineering, Inha University, Incheon 22212, Republic of Korea

Publication date: September 1, 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more