Skip to main content
padlock icon - secure page this page is secure

Synthesis and Characterization of Silicon/Reduced Graphene Oxide Composites as Anodes for Lithium Secondary Batteries

Buy Article:

$106.51 + tax (Refund Policy)

Silicon (Si) is one of the most attractive anode materials for lithium secondary batteries because of its large theoretical capacity, high safety, low cost and environmental benignity. However, Si-based anode material needs to overcome the structural change of the solid-electrolyte interphase due to the large volume change during cycling. To resolve these problems of composites by exploiting the superior conductivity, large specific surface area and flexibility of graphene, we have synthesized reduced graphene oxide (rGO)/Si composite electrode via a simple dip-coating method. Nickel foam is used as a current collector and template for the electrode fabrication. At 0.03 wt%, Si concentration, the rGO/Si composite anode presented the excellent cycle performance with large reversible capacity (778 mAh g−1 after 100 cycles). The characteristics of the rGO/Si composites were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS). The improved anode performance of the rGO/Si composite anode is ascribed to the rGO serving as a buffer layer, thereby preventing the volume expansion of Si nanoparticles, and provide facile electron pathways.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Composite; Dip-Coating; Graphene; Lithium Secondary Batteries; Silicon

Document Type: Research Article

Affiliations: 1: Department of Chemistry, Keimyung University, Daegu, 42601, Korea 2: Department of Energy System Engineering, DGIST, Daegu, 42988, Korea 3: Department of Pharmaceutical Engineering, International University of Korea, Jinju, 52833, Korea

Publication date: July 1, 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more