Skip to main content

N2-BET is a Proxy for Primary Particle Size and May Not Be Representative of Available Specific Surface Area for Aggregated Nanoparticle Aerosols

Buy Article:

$110.00 + tax (Refund Policy)

The knowledge of the specific surface area of aerosolized engineered nanoparticles could be important for mechanistically understanding their toxic potential or functional characteristics. The most widely method to perform this measurement, N2-BET, however, may not accurately represent the available surface area for hetero-aggregated nanoparticles in the context of large biological molecules. This study conducted an analysis of published characterization measurements including primary particle size, aggregation state, and specific surface area made for dry aerosolized nanoparticles. Results indicate that primary particle size explains 65% of the variance in specific surface area, while aggregation (as measured by mass median aerodynamic diameter) only explains 20% of the variance. Curiously, increasing aggregation (larger MMAD) is associated with increasing SSA as measured by N2-BET, likely an artifact of the measurement method, which suggests that this technique may not be appropriate for studies investigating biological interactions with nanoparticles.

Keywords: Aggregation; Nanoparticles; Size; Specific Surface Area

Document Type: Research Article

Affiliations: Department of Energy and Mineral Engineering, Penn State University, University Park, PA, 16802, USA

Publication date: May 1, 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content