Physico-Chemical, Electrochemical and Structural Insights Into Poly(3,4-ethylenedioxythiophene) Grafted from Molecularly Engineered Multi-Walled Carbon Nanotube Surfaces
Composites of multi-walled carbon nanotubes (MWCNTs) and poly(3,4-ethylenedioxythiophene) (PEDOT) are attracting the attention of material scientists since more than a decade as potential next-generation optoelectronic materials for their peculiar features, arising from the combination
of the intrinsic electrical, thermal and morphological properties of the two components. They are indeed a promising platform for the development of low-cost, portable and environmentally friendly electronic devices such as supercapacitors, sensors and actuators. Here a novel synthetic strategy
for their preparation is envisaged, exploiting the possibility to covalently functionalize the external surface of MWCNTs with tailored molecular units, starting from which the growth of the conjugated polymer can be induced oxidatively. The approach demonstrates its value in being able to
effectively promote the formation of PEDOT chains in direct contact with the surface of MWCNTs, differently from what results when the monomer is polymerized in the presence of the pristine carbon nanomaterial. In addition, significant differences are found in the physico-chemical properties
and electrochemical behavior when MWCNT-PEDOT covalent composites are studied in comparison to a non-covalent analogue, here illustrated in detail. These evidences constitute a starting point for the future development of novel more finely tuned functional materials based on MWCNT-PEDOT composites,
featuring the required optoelectronic properties to precisely target the desired application.
Keywords: Carbon Nanotubes; Conjugated Polymers; Electrochemical Supercapacitors; Grafting from; Organic Electronics; Polymer Nanocomposites
Document Type: Research Article
Affiliations: 1: Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131, Padova, Italy 2: FEI Company, P.O. Box 80066, KA 5600 Eindhoven, The Netherlands
Publication date: February 1, 2018
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content