Skip to main content
padlock icon - secure page this page is secure

Physical and Optical Properties of SnO2/ZnO Film Prepared by an RF Magnetron Sputtering Method

Buy Article:

$106.51 + tax (Refund Policy)

Al-, Ga-, and In-doped ZnO thin films are widely used in many technical applications, such as in solar cells and on transparent conducting oxides having high optical transmission and low resistivity values. We prepared SnO2-doped ZnO thin films on quartz substrates by using an RF magnetron sputtering method at a substrate temperature of 350 °C. The ratio of SnO2 to ZnO was varied from 0 to 5:5 to investigate the effects of Sn on structure and physical properties of ZnO film. The samples were synthesized at a base pressure of 1.3 × 10−4 Pa with a working pressure of 1.3 Pa and an RF power of 40 W under Ar atmosphere. The results of X-ray diffraction data revealed that pure ZnO films exhibit a strong (002) orientation and a polycrystalline wurzite hexagonal structure. However, as increasing the SnO2 concentration, ZnO transforms to an amorphous phase. The results of the Hall-effect-measurement system revealed that the resistivity values of the films increased as increasing the doping level of SnO2. The AFM data of morphology and microstructure showed that the grain size decreased with increasing SnO2 contents while the total area of grain the boundary increased. The average value of the transmittance of the films in the visible light range was 80∼95% and was shifted toward to the shorter wavelengths of the absorption edges with increasing SnO2 contents.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more