Skip to main content
padlock icon - secure page this page is secure

Antimicrobial Efficacy of Synthesized Quaternary Ammonium Polyamidoamine Dendrimers and Dendritic Polymer Network

Buy Article:

$106.64 + tax (Refund Policy)

Water treatment to mitigate microbial contaminants is a major challenge across globe paving the way to develop novel antimicrobial compounds. We aim at architecting antibacterial moiety eventually catering to vast water treatment industry. In this research study, quaternary ammonium functionalized polyamidoamine (PAMAM) dendrimer and PAMAM-ethyleneglycol dimethacrylate (EGDMA) dendritic polymer network were synthesized. These materials were characterized by various analytical techniques like ATR-FTIR, 1HNMR, DSC etc. Water soluble generation (G) 1.0 PAMAM dendrimer and water insoluble PAMAM G1.0 EGDMA dendritic polymer network were quaternized by reacting with dilute hydrochloric acid (HCl) and octyl iodide (OI) respectively. Both quaternary ammonium dendrimer products were found to exhibit potent bactericidal activity against a group of common Gram-negative and Gram-positive bacteria. 10 mg/L concentration of liquid PAMAM G1.0 QHCl was efficient to kill 100% bacteria rapidly within an incubation time of just 2 minutes. In addition, quaternary ammonium dendritic polymer network PAMAM G1.0-EGDMA Q OI demonstrated good contact killing antimicrobial property without releasing any active molecule into the surrounding medium and disinfected contaminated water within 5 minutes. Both quaternary ammonium dendrimer and dendritic polymer network showed negligible cytotoxicity in MTT assay indicating their potential as a viable antimicrobial agent.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more