Skip to main content
padlock icon - secure page this page is secure

TiO2/P3HT Hybrid Solar Cell with Efficient Interface Modification by Organic and Inorganic Materials: A Comparative Study

Buy Article:

$106.64 + tax (Refund Policy)

TiO2/P3HT hybrid solar cells were fabricated by infiltrating P3HT into the pores of TiO2 nanowire arrays. CdS quantum dot and pyridine were employed to modify the interface of TiO2/P3HT before P3HT was coated. The results show that the interface treatment significantly enhanced the photovoltaic performance of the cell. However characterization of time-resolved photoluminescence, open-circuit voltage decay and transmission electron microscope analysis revealed that the underlying mechanism was different for the organic and inorganic interface modifications. Pyridine plays an important role in assisting the charge separation at the TiO2/P3HT interface, and suppressing electron back recombination. The reason for CdS modifying the cell in this way is mainly due to the suppression of electron back recombination, and the additional photovoltaic effect generated by CdS itself.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more