Skip to main content
padlock icon - secure page this page is secure

Laser Power Dependent Optical Properties of Mono- and Few-Layer MoS2

Buy Article:

$105.00 + tax (Refund Policy)

We report on the exponential decay of the red-shift of the photoluminescence A-exciton peak in monolayer molybdenum disulfide (MoS2) with the excitation laser power. The linear relationship found for the thermal variation of the same peak suggests that the laser power effect goes beyond the exciton dynamics associated to temperature variations. Laser exitation power effect on the broadening and red-shifting of the A 1g and E 1 2g phonon peaks observed by Raman spectroscopy reflect the damping of vibration due local thermal heating induced by the laser. Our results point out the laser excitation power dependence on the photoluminescence properties of monolayer MoS2.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 September 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more