Skip to main content

Effect of Si3N4 Thickness on the Optical Characterization of Graphene

Buy Article:

Your trusted access to this article has expired.

$110.00 + tax (Refund Policy)

Optical detection of graphene on a specific substrate is important for the analysis of the physical or chemical properties of graphene. Si3N4, an oxygen free substrate with high dielectric constant, is a good candidate to replace SiO2. In this letter, we report the optimization of the Si3N4 thickness for efficient optical characterization by means of the contrast, enhancement factor (F), and the Raman spectra of the graphene obtained on the selected Si3N4/Si substrate. The contrast (visibility) and enhancement factors (F, Raman intensity) of the graphene/Si3N4/Si structure were calculated as a function of the Si3N4 thickness and the wavelength of the excitation source. A suitable Si3N4 thickness generating high visibility and Raman intensities at the wavelength of the excitation source, 633 nm, was obtained.

Document Type: Research Article

Publication date: December 1, 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content