Skip to main content
padlock icon - secure page this page is secure

Magnetic Behavior of High Density Arrays of Co Bars with Strong Magnetostatic Coupling

Buy Article:

Your trusted access to this article has expired.

$106.64 + tax (Refund Policy)

Magnetization reversal processes have been analyzed by Magnetic Force Microscopy in dense arrays of Co bars with well defined shape anisotropy and strong magnetostatic interactions. Two different geometries have been used: rectangular and rhombic so that the sign of dipolar interactions between adjacent chains of bars is changed from antiferromagnetic (rectangular array) to ferromagnetic (rhombic array), having a profound influence on the shape of a nucleus of inversion at the magnetization reversal.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: September 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more