
Hybrid Low Resistance Ultracapacitor Electrodes Based on 1-Pyrenebutyric Acid Functionalized Centimeter-Scale Graphene Sheets
Ultracapacitors are promising candidates for alternative energy storage applications since they can store and deliver energy at relatively high rates. Here, we present hybrid nanocarbon ultracapacitor electrodes with a low equivalent series resistance (ESR) of 7 ohms. 1-pyrenebutyric
acid treated large-area single layer graphene (SLG) sheets covered with shortened multi-walled carbon nanotubes (MWNTs) have been utilized as highly conductive and percolated networks of hybrid carbon nanomaterial composites or thin films as ultracapacitor electrodes. Uniform centimeter scale
single layer graphene sheets were produced via low pressure chemical vapor deposition using copper foil substrates and then subsequently modified by 1-pyrenebutyric acid functionalization. Chemically shortened MWNTs ranging in length of 200∼500 nm, were deposited by drop casting on 1-pyrenebutyric
acid functionalized SLG films. SLG/MWNT nancomposite hybrid films of different thicknesses were obtained by controlling the density of MWNT suspension. Surface morphology and nanostructure of the hybrid nanocomposites indicated relatively dense and homogeneous weblike networks. Specific capacitance
values of the hybrid electrodes were substantially increased by 200% compared to those ultracapacitors fabricated using buckypaper electrodes. Average values of specific capacitance and energy density obtained were 140.64 F/g and 21.54 Wh/kg respectively. SLG/MWNT nanocomposite electrodes
are very promising for future ultracapacitor devices with their low ESR value that is 95% lower than that of buckypaper based ultracapacitors.
Document Type: Research Article
Publication date: September 1, 2012
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content