Skip to main content
padlock icon - secure page this page is secure

Fabrication and Characterization of Highly Crystalline and Stable Phase-Pure Rutile Nanowires

Buy Article:

$105.00 + tax (Refund Policy)

A homogeneous thin layer of TiO2 has been successfully coated on the surface of multiwalled carbon nanotubes (MWCNTs), which were produced by catalytic chemical vapor decomposition method, via an in situ sol–gel method. The obtained MWCNT-TiO2 composite materials were heat treated in air at high temperatures, attempting to produce highly crystalline pure rutile nanowires. Through comprehensive characterization obtained by scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX), and X-ray powder diffraction (XRD), the effect of heat treatment on crystallization and phase transformation was discussed, and the effect of absence of MWCNTs on the morphology of pure rutile nanowires was analyzed. Both anatase and rutile phases exist after heat treatment in 700 °C while only rutile phase exists after heat treatment in 800 °C. The crystal size of rutile is formed to be significantly larger than that of anatase, and the hollow tubular structure is found to be destroyed which resulted in nanowire structure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 August 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more