Skip to main content
padlock icon - secure page this page is secure

Nano-Scale Stick-Slip Friction Model for the Chatter Scratch Generated by Chemical Mechanical Polishing Process

Buy Article:

Your trusted access to this article has expired.

$106.22 + tax (Refund Policy)

Although Chemical Mechanical Planarization (CMP) process is a still promising technology for the fabrication of the next generation devices, CMP-induced defects tackle further development of CMP process. In particular, even nano-sized scratches generated by CMP process kill the device directly. However mechanism of scratch formation was not clearly understood yet. CMP-induced scratches are classified as razor, chatter mark and skipping scratch. Among them, chatter mark scratch (or chatter scratch) is the most critical defect for the device yield loss. Chatter scratch has a periodic pattern of scars, which is reminiscent of a stick-slip friction pattern. Based on that similarity, stick-slip model was proposed in this paper in order to explain how chatter scratch is formed. And controlling parameters for chatter scratch are defined. During stick period the friction force that exceeds the yield strength of wafer surface makes chatter scratch and the distance between chatter marks is determined by slip period.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more