Skip to main content
padlock icon - secure page this page is secure

Electroreduction of H2O2 by Co3O4 and NiCo2O4 Nanowires and β-Ni(OH)2 Nanoplates Grown on Ni Foam

Buy Article:

$105.00 + tax (Refund Policy)

Nanowires (Co3O4 and NiCo2O4) and nanoplates (β-Ni(OH)2) grown on Ni foam are successfully prepared by a template-free method and used as cathode electrodes for the electroreduction of H2O2 in an alkaline medium. Catalytic performance is investigated via cyclic voltammetry and chronoamperometry. The Co3O4 and NiCo2O4 nanowire electrodes exhibit much better catalytic activity, stability, and mass transfer properties for H2O2 electroreduction than pressed Co3O4 and NiCo2O4 nanoparticle/carbon/PTFE electrodes. A current density of 101.8 mA cm−2 and 122.7 mA cm−2 are respectively achieved on Co3O4 and NiCo2O4 nanowire electrodes at −0.4 V in 0.4 mol/L H2O2 and 3.0 mol/L NaOH solution at room temperature.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 April 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more