Skip to main content
padlock icon - secure page this page is secure

Synthesis of Nanostructured SnO2/C Microfibers with Improved Performances as Anode Material for Li-Ion Batteries

Buy Article:

$105.00 + tax (Refund Policy)

Nanostructured SnO2/C microfibers were prepared by thermal decomposition of tin alginate fibers produced via wet-spinning technique. Results of X-ray diffraction and scanning electron microscopy show that the as-obtained SnO2/C microfibers consist of nano-sized SnO2 crystals with a mean diameter of 10–15 nm. Transmission electron microscopy visualization reveals that the composite fibers exhibit a porous structure consisting of both micropores and mesopores. Electrochemical evaluations of cyclic voltammetry and galvanostatic charge-discharge indicate that the SnO2/C microfibers possess a high capacity and good rate capability compared with commercial SnO2. The improved performances of SnO2/C fibers can be attributed to the nano-size of SnO2 particles dispersed in carbon matrix and the existing nanopores in the SnO2/C microfibers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more