Skip to main content
padlock icon - secure page this page is secure

Effect of Flash Lamp Annealing and Laser Spike Annealing on Random Dopant Fluctuation of 15-nm Metal-Oxide-Semiconductor Devices

Buy Article:

$105.00 plus tax (Refund Policy)

Comparison of two different implantation processing techniques for random dopant (RD)-induced threshold voltage fluctuation (σV th) in 15-nm metal-oxide-semiconductor (MOS) devices is reported. Implantations of flash lamp annealing and laser spike annealing are simulated using a kinetic Monte Carlo (KMC) technique. The KMC generated distributions are mapped into device channel for three-dimensional quantum mechanical transport simulation to estimate threshold voltage fluctuation. The main results of this study show that the laser spike annealing could achieve 30% reduction of RDF-induced σV th for low-power application of 15-nm MOS devices, compared with flash lamp annealing.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more