Skip to main content

Cathodic Stripping Synthesis and Cytotoxity Studies of Glutathione-Capped CdTe Quantum Dots

Buy Article:

$107.14 + tax (Refund Policy)

A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540–650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and −2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.


Document Type: Research Article

Publication date: August 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content