
Magnetoviscous Effect in a Maghemite Ferrofluid
An Iron oxide ferrofluid with mean particle size of 10.6 nm was synthesized by co-precipitation. The nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, electron energy loss spectroscopy, and dynamic light scattering. The magnetorheological properties
of ferrofluid were investigated using a rotating rheometer. The effect of magnetic field on the aggregation of magnetic nanoparticles and rheological behavior were investigated. Moreover the effects of concentration and particle size on the magnetoviscousity of ferrofluid were studied. The
results showed that the maghemite is the major magnetic phase. The magnetoviscous effect leads to phase separation at high magnetic fields which is dependent to the concentration. It was shown that the smaller particle sizes which are not contributed in magnetoviscous effect can contribute
at higher magnetic fields.
Keywords: FERROFLUID; IRON OXIDE; MAGNETIC NANOPARTICLES; MAGNETOVISCOUS EFFECT; RHEOLOGICAL BEHAVIOR
Document Type: Research Article
Publication date: June 1, 2011
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content