Skip to main content
padlock icon - secure page this page is secure

Label Free DNA Detection Using Large Area Graphene Based Field Effect Transistor Biosensors

Buy Article:

$105.00 + tax (Refund Policy)

We describe the fabrication of highly sensitive graphene based field effect transistor (FET) biosensors with a cost-effective approach and their application in label-free Deoxyribonucleic acid (DNA) detection. Chemical vapor deposition (CVD) grown graphene layers were used to achieve mass production of FET devices via conventional photolithographic patterning. Non-covalent functionalization of the graphene layer with 1-Pyrenebutanoic acid succinimidyl ester ensures high conductivity and sensitivity of the FET device. The present device could reach a detection limit as low as 3 × 10–9 M.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BIOSENSOR; DNA; FET; FUNCTIONALIZATION; NON-COVALENT

Document Type: Short Communication

Publication date: 01 June 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more