Skip to main content

Charge-Carrier Injection into Pentacene Thin Film Formed on Si(111) Probed by STM Spectroscopy

Buy Article:

$110.00 + tax (Refund Policy)

The injection of charge carriers into a pentacene thin film formed on a Si substrate was investigated by scanning tunneling microscopy (STM). Tip height versus bias voltage (zV) spectroscopy reveals the characteristic charge transport properties of the molecular film, i.e., the conductivity and the threshold energy of charge injection. The abrupt descent of the tip into the film owing to the transition of film conductance, which depends on the degree of charge carrier injection, was observed for crystallized pentacene thin films. The lower film conductance at around zero bias voltage is still higher than that of a vacuum. This indicates that the carrier injection barrier between the pentacene and the semiconducting substrate is extremely low. The convergence of the carrier injection endpoints into a narrow range of electric-field intensity implies that the main factor contributing to barrier formation and collapse is not the bias voltage but the electric field.

Keywords: CHARGE INJECTION; PENTACENE; STM; THIN FILM

Document Type: Research Article

Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content