Skip to main content
padlock icon - secure page this page is secure

Selective Protein Patterning Based on the Micro-Structured Organosilane Self-Assembled Monolayer by Vacuum Ultraviolet Light Lithography

Buy Article:

$106.67 + tax (Refund Policy)

We have succeeded to immobilize fluorescent proteins selectively using a micro-structured organosilane self-assembled monolayer as a template. An organosilane layer with amino terminal group was formed on a thermally oxidized Si wafer by liquid-phase method and then was pattern-etched by vacuum ultraviolet light (VUV). The second organosilane layer with thiol terminal group was deposited on the etched area by chemical vapor surface modification method (CVSM). These micro-structured organosilane layer containing two reactive terminal groups were chemically modified using bi-functional linkers. Two kinds of fluorescent protein, Enhanced Cyan Fluorescent Protein (ECFP) and R-phycoerythrin were selectively immobilized on the chemically modified surface.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more