Skip to main content
padlock icon - secure page this page is secure

An Atomistically Enriched Continuum Model for Nanoscale Contact Mechanics and Its Application to Contact Scaling

Buy Article:

$106.38 + tax (Refund Policy)

This work provides a comprehensive exposition and extension of an atomistically enriched contact mechanics model initially proposed by the present authors. The contact model is based on the coarse-graining of the interaction occurring between the molecules of the contacting bodies. As these bodies may be highly compliant, a geometrically nonlinear kinematical description is chosen. Thus a large deformation continuum contact formulation is obtained which reflects the attractive and repulsive character of intermolecular interactions. Further emphasis is placed on the efficiency of the proposed atomistic-continuum contact model in numerical simulations. Therefore three contact formulations are discussed and validated by lattice statics computations. Demonstrated by a simple benchmark problem the scaling of the proposed contact model is investigated and some of the important scaling laws are obtained. In particular, the length scaling, or size effect, of the contact model is studied. Due to its formal generality and its numerical efficiency over a wide range of length scales, the proposed contact formulation can be applied to a variety of multiscale contact phenomena. This is illustrated by several numerical examples.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: July 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more