Skip to main content
padlock icon - secure page this page is secure

Efficient Numerical Schemes for Electronic States in Coupled Quantum Dots

Buy Article:

$106.39 + tax (Refund Policy)

Electronic states in coupled quantum dots are studied numerically and qualitatively in this article. A second-order finite volume scheme based on uniform meshes is first developed to solve the three-dimensional Schrödinger equation. The scheme is used to solve the eigenvalue problem with more than 12million unknowns. Using these efficient numerical tools, we study quantum structure induced interactions, with emphases on the effects of dot size and space layer thickness. The numerical experiments have predicted the phenomena that envelope functions become delocalized over two QDs and the energy levels show anticrossing behavior.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTICROSSING; COUPLED QUANTUM DOTS; DELOCALIZATION; ELECTRONIC STATES; FINITE VOLUME METHOD; NUMERICAL SIMULATION; SCHRODINGER EQUATION

Document Type: Research Article

Publication date: July 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more